Save the model as an HDF5 file. In the future we will support ONNX. Please be mindful of the current limitations.
This can be done through our command-line tool, python code or on this website!
Go to your preferred IDE and integrate the nn4mc code into your project!
Manzano, S. A., Hughes, D., Simpson, C., Patel, R., & Correll, N. (2019). Embedded Neural Networks for Robot Autonomy. International Symposium of Robotics Research (ISRR 2019, Hanoi). arXiv preprint arXiv:1911.03848.
Manzano, S. A., Hughes, D., Simpson, C., Patel, R., & Correll, N. (ISRR 2019). Embedded Neural Networks for Robot Autonomy. arXiv preprint arXiv:1911.03848.
Hughes, D., Heckman, C., & Correll, N. (2019). Materials that make robots smart. The International Journal of Robotics Research, 38(12-13), 1338-1351.
Manzano S.A., Xu P., Ly K., Shepherd R., Correll N. (2021) High-Bandwidth Nonlinear Control for Soft Actuators with Recursive Network Models. In: Siciliano B., Laschi C., Khatib O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_52
The future of nn4mc is to be a toolkit that allows the user to also perform incremental learning.
If you are interested in collaborating with us, please e-mail us at: Sarah.AguasvivasManzano@colorado.edu